Fetal programming how much is "over" before it begins? Edwina Yeung, PhD NICHD

Outline

- Developmental Origins of Health and Disease (DOHaD): Programming of adiposity
- Epigenetics as mechanism
 - \rightarrow Evidence of transgenerational impact
- Challenges for epidemiologic studies

" Programming" of adiposity

- Prenatal factors associated with increased adiposity later in life
 - Maternal obesity
 - Siblings before and after maternal bariatric surgery
 - Maternal diet
 - High fat diet
 - Maternal hyperglycemia
 - Gestational diabetes
 - Growth restriction
 - Exacerbated by postnatal weight gain ("catch up" growth)
 - "Obesogens"
 - Environmental chemical exposures (e.g. DDT/DDE)

Kubo 2014; Plata 2014; Warner 2014; Poon 2013; Martin-Gronert 2012; Budge 2005

- Maternal obesity
- Maternal diet
- Maternal hyperglycemia
- Growth restriction
- "Obesogens"

- Maternal obesity
- Maternal diet
- Maternal hyperglycemia
- Growth restriction
- "Obesogens"

How much is over...? Studies of pre- versus post- natal influences

- Postnatal diet influences more than prenatal
 - Diet induced obesity in mice after weaning affected offspring more than maternal over-nutrition (King 2014)
 - Pre- and post- natal exposure to maternal high fat diet (Sun et al. Diabetes 2012)

- Maternal obesity
- Maternal diet
- Maternal hyperglycemia
- Growth restriction
- "Obesogens"

Catch-up "Fat"

Dullo 2006

- Maternal obesity
- Maternal diet
- Maternal hyperglycemia
- Growth restriction
- "Obesogens"

Unclear maybe not able to amelierate

Martin-Gronert 2012

Epigenetics as DOHaD mechanism

- Histone modification
- mRNA
- DNA methylation

development •	ExposureEarly environment e.g. prenatal nutrition		
F • •	Record Epigenetic change e.g. in DNA methylation Some loci are particularly sensitive		
P • •	 Propagate Inherited during cell division Tissue- or even soma-wide presence Blood may mark other tissues 		
F ↓ •	Retain Stable maintenance unless age-related degeneration occurs		
Adult E phenotype	 Express Persistent change in transcriptional potential contributing to disease risk 		
	Transmit Transgenerational effects?		

Wolff FASEB J 1998; 12(11):949-957; Heijmans et al. Epigenetics 4:8, 1-6; November 16, 2009

Trans-generation mechanism

- Epigenetic "erasure" occurs at 2 time points:
 - Preimplantation embryo
 - Primordial germ cells
 - E.g. epigenetic alterations (+50%) in mice conceived by use of intracytoplasmic sperm injection (ICSI) but not in their offspring
- Transgenerational epimutations: those not corrected at reprogramming of germline
 - E.g. tributyltin

McCarrey 2014; Chamorro-García 2013

Trans-generation effects epidemiologic findings

	Överkeliv cohorts				
Reference	by grandchild's or proband birth year	Prior research question	Main findings	Comments	
Bygren <i>et al²⁷</i>	1905 (n=94)	Any link between ancestral food supply at two periods in childhood, the prepubertal spurt or the period just before and proband <i>longevity</i> ?	Paternal grandfather's food supply just before prepubertal growth spurt inversely associated with proband longevity	This study defined the mid-childhood 'slow growth period' as an exposure period associated with transgenerational effects	
Kaati <i>et al²⁸</i> Bygren <i>et al^{99 100}</i>	1895 (n=107) 1905 (n=99) 1920 (n=111)	Any link between ancestral <i>mid-childhood</i> food supply and proband <i>cardiovascular and diabetes mortality</i> ?	Father's poor, and mother's good, food supply in mid-childhood linked to reduced proband cardiovascular mortality. Paternal grandfather's good mid-childhood food supply linked to increased proband diabetic mortality	Diabetic mortality was included as a prior hypothesis based on possible role of imprinted genes. Each diabetic proband had a different paternal grandfather (Bygren <i>et al.</i> 2006)	
Pembrey <i>et al</i> ²⁹	1895 (n=107) 1905 (n=99) 1920 (n=111)	Any <i>sex-specific</i> link between (grand) parental mid-childhood food supply and proband <i>mortality rate ratio</i> ?	Paternal grandfather's food supply linked to grandson's mortality; paternal grandmother's food supply to granddaughter's mortality	Stratification by sex of the proband suggested by early ALSPAC results of paternal smoking effects (Northstone <i>et al.</i> 2014 ³⁹). Exposure-sensitive period in mid childhood but not (pre)puberty confirmed	
Kaati <i>et al</i> ³⁰	1895 (n=107) 1905 (n=99) 1920 (n=111)	Any link between (grand) parental mid-childhood food supply and proband early-life circumstances and sex-specific longevity?	Grandparental sex-specific transgenerational effects (as above) persisted. Parental effects now revealed as well	Taking proband's early-life circumstances into account revealed a father to son effect on longevity	
Bygren <i>et al³¹</i>	1895 (n=107) 1905 (n=99) 1920 (n=111)	Any link between <i>sharp change</i> in grandparental food supply in childhood (0—13ys) and proband <i>cardiovascular mortality</i> ?	Sharp change in food supply of <i>paternal</i> grandmother linked to increased cardiovascular mortality in <i>female</i> probands	Prior hypothesis—transgenerational effects of change in supply as the demonstrated effects from gestation to adulthood (Bygren <i>et al.</i> 2000) ¹⁰¹	

Pembrey 2014

Challenging epidemiologic methods

- Confounding by parental/familial behaviors/exposures
 - Can take the animal off an environmental influence after birth
- Exposure measurement
- Human growth and development
- Sex-specific differences
- Tissue specific alterations to epigenome

Summary

- How much is over...?
 - There are opportunities to overcome some prenatal influences
 - E.g. maternal versus early childhood diet
 - Pregnancy remains an important window for interventions to interrupt longer term effects
 - E.g. obesogen exposure
 - Other outcomes not discussed today may be more so "determined" at birth (e.g. vascular stiffness, cognitive development)
 - Trans-generational exposures much more difficult to evaluate but much longer impact